Answer:
See explanation
Step-by-step explanation:
MNPQ is a parallelogram. Then
- [tex]MQ\cong NP;[/tex]
- [tex]MN\cong QP.[/tex]
By segment addition postulate,
- [tex]MQ\cong QU+UM;[/tex]
- [tex]PN\cong PS+SN;[/tex]
- [tex]QP\cong QT+TP;[/tex]
- [tex]MN\cong MR+RN.[/tex]
Given that MU ≅ SP and RN ≅ QT, then [tex]QU\cong SN[/tex] and [tex]MR\cong TP.[/tex]
Consider triangles QUT and NSR. In these triangles,
- [tex]QU\cong NS[/tex] - proven;
- [tex]QT\cong NR[/tex] - given;
- [tex]\angle UQT\cong \angle SNR[/tex] - as opposite ngles of parallelogram MNPQ.
By SAS postulate, triangles QUT and NSR are congruent. Then [tex]UT\cong SR.[/tex]
Consider triangles MRU and PTS. In these triangles,
- [tex]MR\cong PT[/tex] - proven;
- [tex]MU\cong PS[/tex] - given;
- [tex]\angle UMR\cong \angle SPT[/tex] - as opposite ngles of parallelogram MNPQ.
By SAS postulate, triangles MRU and TPS are congruent. Then [tex]UR\cong TS.[/tex]
In quadrilateral RSTU, [tex]UT\cong SR[/tex] and [tex]UR\cong TS.[/tex] Since opposite sides of the quadrilateral are congruent, the quadrilateral is a parallelogram.