A cylindrical specimen of some metal alloy 10 mm (0.4 in.) in diameter is stressed elastically in tension. A force of 15,000 N (3370 lbf) produces a reduction in specimen diameter of 7 x 10 ^-3 mm (2.8 x 10^-4 in.). Compute Poisson’s ratio for this material if its elastic modulus is 100 GPa ( 14.5 x 10^6 psi).

Respuesta :

Answer:

Poisson’s ratio = 0.36

Explanation:

Given that

Diameter ,d= 10 mm

Force ,F= 15000 N

Reduction in diameter ,Δd = -7 x 10⁻³ mm

E= 100 GPa

Longitudinal strain

[tex]\varepsilon_{logn}=\dfrac{P}{AE}[/tex]

[tex]A=\dfrac{\pi d^2}{4}[/tex]

[tex]\varepsilon_{logn}=\dfrac{P}{\dfrac{\pi d^2}{4}\times E}[/tex]

[tex]\varepsilon_{logn}=\dfrac{15000}{\dfrac{\pi \times 10^2}{4}\times 100\times 1000}[/tex]

[tex]\varepsilon_{logn}=0.0019[/tex]

Lateral strain

[tex]\varepsilon_{lat}=\dfrac{\Delta d}{d}[/tex]

[tex]\dfrac{\Delta d}{d}=-\mu\times \varepsilon_{long}[/tex]

[tex]\dfrac{7\times 10^{-3}}{10}=-\mu\times 0.0019[/tex]

μ= 0.36

Poisson’s ratio = 0.36

The value of Poisson's ratio of the given material is; μ = 0.36

What is the poisson's ratio?

We are given;

Diameter; d = 10 mm

Force; F = 15000 N

Change in diameter; Δd = -7 x 10⁻³ mm

Elastic modulus; E = 100 GPa = 100000 mPa

Formula for Longitudinal strain is;

ε = P/AE

where;

P is force

A is area = πd²/4 = π × 10²/4 = 25π

Thus;

ε = 15000/(25π * 100000)

ε = 0.0019

Formula for lateral strain is;

ε * μ = -Δd/d

where μ is poisson ratio. Thus;

μ = (7 x 10⁻³)/(10 * 0.0019)

μ = 0.36

Read more about Poisson's ratio at; https://brainly.com/question/12974160

Q&A Education