Answer:
Step-by-step explanation:
Given:
[tex]C_{(x)}=-0.00001x^{2}-0.02x+49[/tex]
for x≤1400; N = 5
So, Δx = [tex]\frac{1400-0}{5} =280\\\\\int\limits^{1400}_0 {C(x)} \, dx[/tex]=∑C(a + nΔx).Δx
=C(0)Δx + C(280)Δx + C(560)Δx + C(840)Δx + C(1120)Δx
= Δx[C(0) + C(280) + C(560) + C(840) + C(1120)]
= 280[49 + 42.616 + 34.664 + 25.144 + 14.056]
=280[165.48]
=46334 approx