Respuesta :
let's say is 16% of "x", meaning "x" is the 100%.
we know "x" is 100% and 16% of it is 10, so
[tex]\bf \begin{array}{ccll} amount&\%\\ \cline{1-2} x&100\\ 16&10 \end{array}\implies \cfrac{x}{16}=\cfrac{100}{10}\implies \cfrac{x}{16}=10\implies x = 160[/tex]
Answer:
160
Step-by-step explanation:
[tex]\bold{METHOD\ 1:}\\\\\begin{array}{cccc}16&-&10\%&\text{multiply both sides by 10}\\\\(16)(10)&-&(10\%)(10)\\\\160&-&100\%\end{array}[/tex]
[tex]\bold{METHOD\ 2:}\\\\\begin{array}{ccc}10\%&-&16\\\\100\%&-&x\end{array}\qquad\text{cross multiply}\\\\\\(10)(x)=(100)(16)\\\\10x=1600\qquad\text{divide both sides by 10}\\\\\dfrac{10x}{10}=\dfrac{1600}{10}\\\\x=160[/tex]
[tex]\bold{METHOD\ 3:}\\\\x-\text{number}\\\\p\%=\dfrac{p}{100}\to10\%=\dfrac{10}{100}=\dfrac{1}{10}=0.1\\\\10\%\ of\ x\ is\ equal\ 16:\\\\0.1x=16\qquad\text{divide both sides by 0.1}\\\\\dfrac{0.1x}{0.1}=\dfrac{16}{0.1}\\\\x=\dfrac{16\cdot10}{0.1\cdot10}\\\\x=\dfrac{160}{1}\\\\x=160[/tex]