Respuesta :
Answer: After 18.05 minutes, the temperature of steel becomes 100 degrees.
Step-by-step explanation:
Since we have given that
Initial temperature = 2500
At t = 0,
we get that
[tex]f(t)=Ce^{-kt}+80\\\\2500=C+80\\\\2500-80=C\\\\2420=C[/tex]
After 2 minutes, the temperature of the steel is 1500 degrees.
so, it becomes,
[tex]1500=2420e^{-2k}+80\\\\1500-80=2420e^{-2k}\\\\\dfrac{1420}{2420}=e^{-2k}\\\\0.587=e^{-2k}\\\\\ln 0.587=-2k\\\\-0.533=-2k\\\\k=\dfrac{0.533}{2}\\\\k=0.266[/tex]
So, We need to find the number of minutes when the temperature of steel would be 100 degrees.
So, it becomes,
[tex]100=2420e^{-0.266t}+80\\\\100-80=2420e^{-0.266t}\\\\20=2420e^{-0.266t}\\\\\dfrac{20}{2420}=e^{-0.266t}\\\\\ln \dfrac{20}{2420}=-0.266t\\\\-4.8=-0.266t\\\\t=\dfrac{4.8}{0.266}\\\\t=18.05[/tex]
Hence, after 18.05 minutes, the temperature of steel becomes 100 degrees.