Answer:
$502.96 to $597.04
Step-by-step explanation:
Mean sample revenue (μ) = $550
Standard deviation (σ) = $120
Sample size (n) = 25 days
The lower and upper bound for a 95% confidence interval are given by:
[tex]U=\mu +1.960*\frac{\sigma}{\sqrt{n}}\\L=\mu -1.960*\frac{\sigma}{\sqrt{n}}[/tex]
Applying the given data:
[tex]U=550 +1.960*\frac{120}{\sqrt{25}}\\U= \$597.04\\L=550 -1.960*\frac{120}{\sqrt{25}}\\L= \$502.96[/tex]
The 95% confidence interval is $502.96 to $597.04.