Respuesta :

Answer:

The correct option is 6

Step-by-step explanation:

Given expression,

[tex](2m-3n)^9[/tex]

By the binomial expansion,

[tex](a+b)^x = \sum _{r=0}^{x} ^xC_r a^{x-r} b^{r}[/tex]

Where,

[tex]^xC_r=\frac{x!}{r!(x-r)!}[/tex]

Thus,

[tex](2m-3n)^9 = \sum _{r=0}^{9} ^9C_r (2m)^{9-r} (-3n)^{r}[/tex]

For finding the term containing [tex]m^3[/tex]

9 - r = 3

⇒ 9 - 3 = r

⇒ r = 6

i.e. the required term is,

[tex]^9C_6 (2m)^{3} (-3n)^{6}[/tex]

Hence, the power of n in that term = 6.

Q&A Education