Respuesta :

Limosa

Answer:

[tex](3252.1001)_{6}[/tex]

Explanation:

  • To convert the base 14 to base 10 :

[tex](3BA.25)_{14}[/tex]= [tex]3*14^{2}[/tex] + [tex]B*14^{2}[/tex] + [tex]A*14^{0}[/tex] + [tex]2*14^{-1}[/tex] + [tex]5*14^{-1}[/tex]

Then,    = [tex]588+154+10+\frac{2}{14^{1}} + \frac{5}{14^{2}}[/tex]

Then,    =[tex]752 + 0.168[/tex]

            =[tex](752.168)_{10}[/tex]

  • To convert base-10, [text](752.168)_{10}[/text] to base 6.

     6 | 752 | 2

     6 | 125 | 2

     6 | 20  | 2

     6 | 3    | 3

        | 0    |

Then, the conversion part 752 which has base-6 = 3252

  • Then, the conversation of the decimal part .168 to base 6

[tex]0.168*6=1.008[/tex] and the integer part is 1.

[tex]0.008*6=0.048[/tex] and the integer part is 0.

[tex]0.048*6=0.288[/tex] and the integer part is 0.

[tex]0.288*6=1.728[/tex] and the integer part is 1.

Then, the conversion of decimal part is [tex](0.1001)_{6}[/tex]

Finally, the answer is  [tex](3252.1001)_{6}[/tex]

Q&A Education