Answer:
The maximum volume of water is [tex]7\frac{7}{9}\ in^3[/tex]
Step-by-step explanation:
we know that
The volume of a rectangular prism (Hamster bath) is equal to
[tex]V=(L)(W)(D)[/tex]
where
L is the length
W is the width
D is the deep
we have
[tex]L=2\frac{1}{3}=\frac{2*3+1}{3}=\frac{7}{3}\ in[/tex]
[tex]W=2\ in[/tex]
[tex]D=1\frac{2}{3}=\frac{1*3+2}{3}=\frac{5}{3}\ in[/tex]
substitute the values in the formula
[tex]V=(\frac{7}{3})(2)(\frac{5}{3})[/tex]
[tex]V=\frac{70}{9}\ in^3[/tex]
Convert to mixed number
[tex]\frac{70}{9}\ in^3=\frac{63}{9}+\frac{7}{9}=7\frac{7}{9}\ in^3[/tex]
therefore
The maximum volume of water is [tex]7\frac{7}{9}\ in^3[/tex]