Given the functionLaTeX: f(x)=\frac{x^2+7x+10}{x^2+9x+20}f ( x ) = x 2 + 7 x + 10 x 2 + 9 x + 20

Describe where the function has a vertical asymptote and how you found your answer. Remember that an asymptote is represented by an equation of a line and not just a single value.

Respuesta :

The equation of Vertical asymptote is x+4=0

Step-by-step explanation:

Figure shows vertical asymptote at x=4=0

Where redline is f(x) and blueline is vertical asymptote

Given the function is f(x) = [tex]\frac{x^{2}+7x+10 }{x^{2}+9x+20 }[/tex]

Step 1 : Simplifying denominator and numerator

For denominator

[tex]x^{2}+9x+20=0[/tex]

[tex]x^{2}+5x+4x+20=0[/tex]

[tex]x(x+5)+4(x+5)=0[/tex]

[tex](x+4)(x+5)=0[/tex]

For numerator

[tex]x^{2}+7x+10=0[/tex]

[tex]x^{2}+5x+2x+10=0[/tex]

[tex](x+5)(x+2)=0[/tex]

Step2 : Finding Vertical asymptote

After simplification of f(x)

f(x) = [tex]\frac{(x+5)(x+2)}{(x+5)(x+4)}[/tex]

f(x) = [tex]\frac{(x+2)}{(x+4)}[/tex]

Here, Denominator will give Vertical asymptote.

Therefore, Vertical asymptote is x+4=0

Q&A Education