Use the unit circle to find the value of sin 3pi/2 and cos 3pi/2
Answer:
[tex]\cos \dfrac{3\pi}{2}=0[/tex]
[tex]\sin \dfrac{3\pi}{2}=-1[/tex]
Step-by-step explanation:
First, determine the point on the unit circle which corresponds to angle [tex]\dfrac{3\pi}{2}[/tex] (that is 270° in degrees)
Start from point (1,0) - this point represents angle 0.
Point (0,1) represents angle [tex]\dfrac{\pi}{2}[/tex] (that is 90° in degrees) point (-1,0) represents angle [tex]\pi[/tex] (that is 180° in degrees) and point (0,-1) represents angle [tex]\dfrac{3\pi}{2}.[/tex]
The first coordinate of this point is the value of cosine, then
[tex]\cos \dfrac{3\pi}{2}=0[/tex]
the second coordinate is the value of sine, then
[tex]\sin \dfrac{3\pi}{2}=-1[/tex]