You need to construct an open-top rectangular box with a square base that must hold a volume of exactly 800 cm3. The material for the base of the box costs 5 cents/cm2 and the material for the sides of the box costs 7 cents/cm2. Find the dimensions for a box that will minimize the cost of the materials used to construct box.

Respuesta :

Answer:

Step-by-step explanation:

Given

Volume of box is 800 cm^3

[tex]V=800 cm^3[/tex]

Let the dimension of base is [tex]L\times L[/tex] and height of box be h

[tex]V=L^2\times h[/tex]

cost base [tex]c_1=L^2\times 5=5L^2[/tex]

cost of sides [tex]c_2=(4Lh)\cdot 7[/tex]

[tex]c_2=28Lh[/tex]

Total Cost[tex]=c_1+c_2[/tex]

[tex]C=5L^2+28Lh [/tex]

[tex]C=5L^2+28L\cdot \frac{800}{L^2}[/tex]

[tex]C=5L^2+\frac{800\times 28}{L}[/tex]

differentiate C w.r.t L to get maximum/minimum Value

[tex]\frac{\mathrm{d} C}{\mathrm{d} L}=10L-\frac{800\times 28}{L^2}[/tex]

[tex]L=13.05 cm[/tex]

[tex]h=4.69 cm[/tex]                

Q&A Education