Zacharias is using the quadratic formula to solve the equation 0 = –2x2 + 5x – 3. He begins by substituting as shown. Quadratic formula: x = StartFraction negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFraction Substitution: x = StartFraction negative 5 plus or minus StartRoot 5 squared minus 4(2)(negative 3) EndRoot Over 2(negative 2) EndFraction What error did Zacharias make? The –5 should be 5. The 52 should be –52. The 2 in the numerator should be –2. The 2 in the denominator should be –2

Respuesta :

Answer:

The 2 in the numerator should be –2

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]-2x^{2} +5x-3=0[/tex] Β 

so

[tex]a=-2\\b=5\\c=-3[/tex]

substitute in the formula

[tex]x=\frac{-(5)(+/-)\sqrt{5^{2}-4(-2)(-3)}} {2(-2)}[/tex]

[tex]x=\frac{-5(+/-)\sqrt{25-24}} {-4}[/tex]

[tex]x=\frac{-5(+/-)1} {-4}[/tex]

[tex]x=\frac{-5(+)1} {-4}=1[/tex]

[tex]x=\frac{-5(-)1} {-4}=1.5[/tex]

therefore

The 2 in the numerator should be –2

Answer: d on edge2020

Step-by-step explanation: no cap

Q&A Education