Kent has a bag with 8 blue marbles, 6 red marbles, and 6 green marbles in it. If he draws two marbles out of the bag one at a time without replacement, what is the probability that both marbles will be blue?

A. 1/10
B. 7/50
C. 14/95
D. 4/25
E. 16/95

Respuesta :

Answer:

C) The probability of drawing two blue marbles without replacement  is [tex] \frac{14}{95}[/tex]

Step-by-step explanation:

Total number of blue marbles  = 8

Total marbles = Number  of ( Blue + Red + Green) marbles

                        = 8+ 6 + 6 = 20 marbles

Now,Let  E: Event of picking a blue marble

Also, we know that P (any Event E) = [tex]\frac{\textrm{Number of favorable outcomes}}{\textrm{ Total number of outcomes }}[/tex]

⇒ P( Picking first Blue marble) = [tex]\frac{\textrm{Number of blue marbles}}{\textrm{ Total number of marbles }}  = \frac{8}{20}[/tex]

Now, again P( Picking second Blue marble) = [tex]\frac{\textrm{Number of blue marbles left}}{\textrm{ Total number of marbles left }}  = \frac{7}{19}[/tex]

Again , P( Drawing two blue marbles without replacement)

= P( Picking first Blue marble)  x P( Picking second Blue marble)

[tex]= \frac{8}{20}  \times \frac{7}{19}  = \frac{14}{95}[/tex]

Hence, the probability of drawing two blue marbles without replacement from the bag is [tex] \frac{14}{95}[/tex]

Q&A Education