Respuesta :

Answer:

The required equivalent Expression is

[tex]-3+\frac{2}{3}y -4 -\frac{1}{3}y =-7+\frac{1}{3}y[/tex]

Step-by-step explanation:

Associative property:

The associative property states that you can re-group numbers and you will get the same answer.

For Example:

A + (B + C) = (A + B) + C

Commutative property:

The commutative property states that you can move numbers around and still arrive at the same answer.

For Example:

A + B = B + A

Given:

[tex]-3+\frac{2}{3}y -4 -\frac{1}{3}y[/tex]

Using Commutative property and associative property we get

[tex]-3+\frac{2}{3}y -4 -\frac{1}{3}y = -3 -4+\frac{2}{3}y -\frac{1}{3}y\\\\-3+\frac{2}{3}y -4 -\frac{1}{3}y = -7 +\frac{2-1}{3}y\\\\-3+\frac{2}{3}y -4 -\frac{1}{3}y =-7+\frac{1}{3}y[/tex]

Therefore the required equivalent Expression is

[tex]-3+\frac{2}{3}y -4 -\frac{1}{3}y =-7+\frac{1}{3}y[/tex]

Q&A Education