Answer:
[tex]\frac{50 + 1.1(n)}{48.9 + 1.1(n)}[/tex]
Step-by-step explanation:
The simple interest is calculated only on initial amount deposited and so the interest per year is constant.
Let the initial amount be "x".
The interest for first n years is,
[tex](\frac{2.2}{100})(x)(n)[/tex]
and so the final amount is
[tex]A1 = (x) + ((\frac{2.2}{100})(x)(n))[/tex]
Similarly for n-1 years,
interest is = [tex](\frac{2.2}{100})(x)(n-1)[/tex]
and amount is ,
A2 = x + [tex](\frac{2.2}{100})(x)(n-1)[/tex]
The required ratio is ,
[tex]\frac{A1}{A2} = \frac{(x) + ((\frac{2.2}{100})(x)(n))}{x + \frac{2.2}{100})(x)(n-1)}[/tex]
[tex]\frac{A1}{A2} = \frac{50 + 1.1(n)}{48.9 + 1.1(n)}[/tex]