Respuesta :

Answer:

[tex]\frac{1}{4}[/tex]( [tex]\sqrt{6}[/tex] - [tex]\sqrt{2}[/tex])

Step-by-step explanation:

Using the addition formula for cosine

cos(x - y) = cosxcosy + sinxsiny

and the exact values

sin45° = cos45° = [tex]\frac{1}{\sqrt{2} }[/tex]

cos60° = [tex]\frac{1}{2}[/tex], sin60° = [tex]\frac{\sqrt{3} }{2}[/tex]

Note that

cos(- 75)° = cos(45 - 120)°, thus

cos(45 - 120)°

= cos45° cos120° + sin45° sin120°

= cos45° ( - cos60°) + sin45° sin60°

= [tex]\frac{1}{\sqrt{2} }[/tex] × - [tex]\frac{1}{2}[/tex] + [tex]\frac{1}{\sqrt{2} }[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex]

= - [tex]\frac{1}{2\sqrt{2} }[/tex] + [tex]\frac{\sqrt{3} }{2\sqrt{2} }[/tex]

= [tex]\frac{\sqrt{3}-1 }{2\sqrt{2} }[/tex] × [tex]\frac{\sqrt{2} }{\sqrt{2} }[/tex]

= [tex]\frac{\sqrt{2}(\sqrt{3}-1)  }{4}[/tex]

= [tex]\frac{1}{4}[/tex]( [tex]\sqrt{6}-\sqrt{2}[/tex])

Q&A Education