Respuesta :

Answer:

[tex]\sin \frac{11 \pi}{6} \text { is equivalent to } \sin \frac{7 \pi}{6}[/tex]

Option: D

Step-by-step explanation:

[tex]\text { Given that, } \sin \frac{7 \pi}{6}[/tex]

To find the equivalent option,

[tex]\text { We know that } \pi=180^{\circ}[/tex]

[tex]\text { Take, sin } \frac{7 \pi}{6} \text { substitute the value of } \pi=180^{\circ} \text { then, }[/tex]

[tex]\sin \frac{7 \times 180}{6}[/tex]

[tex]=\sin \frac{1260}{6}[/tex]

= sin 210

= -0.5

[tex]\sin \frac{7 \pi}{6}=-0.5[/tex]

Now, check for all the options, select the option which is equal to -0.5.

Check for option: D  

[tex]\sin \frac{11 \pi}{6}\left(\pi=180^{\circ}\right)[/tex]

[tex]=\sin \frac{11 \times 180}{6}[/tex]

[tex]=\sin \frac{1980}{6}[/tex]

= sin 330

= -0.5

[tex]\sin \frac{11 \pi}{6}=-0.5[/tex]

[tex]\text { Therefore, } \sin \frac{11 \pi}{6}=\sin \frac{7 \pi}{6}[/tex]

Answer:

D. sin 11pi/6

Step-by-step explanation:

this is correct on ed-genuity, hope this helps! :)

Q&A Education