Respuesta :
Answer:
[tex]\sin \frac{11 \pi}{6} \text { is equivalent to } \sin \frac{7 \pi}{6}[/tex]
Option: D
Step-by-step explanation:
[tex]\text { Given that, } \sin \frac{7 \pi}{6}[/tex]
To find the equivalent option,
[tex]\text { We know that } \pi=180^{\circ}[/tex]
[tex]\text { Take, sin } \frac{7 \pi}{6} \text { substitute the value of } \pi=180^{\circ} \text { then, }[/tex]
[tex]\sin \frac{7 \times 180}{6}[/tex]
[tex]=\sin \frac{1260}{6}[/tex]
= sin 210
= -0.5
[tex]\sin \frac{7 \pi}{6}=-0.5[/tex]
Now, check for all the options, select the option which is equal to -0.5.
Check for option: D
[tex]\sin \frac{11 \pi}{6}\left(\pi=180^{\circ}\right)[/tex]
[tex]=\sin \frac{11 \times 180}{6}[/tex]
[tex]=\sin \frac{1980}{6}[/tex]
= sin 330
= -0.5
[tex]\sin \frac{11 \pi}{6}=-0.5[/tex]
[tex]\text { Therefore, } \sin \frac{11 \pi}{6}=\sin \frac{7 \pi}{6}[/tex]
Answer:
D. sin 11pi/6
Step-by-step explanation:
this is correct on ed-genuity, hope this helps! :)