Respuesta :

Answer:

[tex]f^{-1}[/tex](h) =  [tex]\sqrt{h - 1}[/tex] + 1.

Step-by-step explanation:

Given, f(h) = [tex]h^{2}[/tex] - 2h + 4.

                   h ≥ 1 .

f(h) = [tex](h-1)^{2}[/tex] + 3.

Now, to calculate the inverse of the function we have to interchange h and f(h). {Where interchanged f(h) will represent inverse of the function}

So,

 h = [tex](f(h)-1)^{2}[/tex] + 3

 h - 3  = [tex](f(h)-1)^{2}[/tex]

 f(h) -1 = [tex]\sqrt{h - 1}[/tex]

  f(h) =   [tex]\sqrt{h - 1}[/tex] + 1.

f(h) ⇒  Representing inverse of f(h) as stated above.

Thus, [tex]f^{-1}[/tex](h) =  [tex]\sqrt{h - 1}[/tex] + 1.

Q&A Education