Answer:
d. [tex]\displaystyle [-1\frac{1}{2}π, 0], [-\frac{π}{2}, 0], [1\frac{1}{2}π, 0], [\frac{π}{2}, 0][/tex]
c. [tex]\displaystyle [0, 1][/tex]
b. [tex]\displaystyle Range: \\ Set-Builder\:Notation → y|1 ≥ y ≥ -1 \\ Interval\:Notation → [-1, 1][/tex]
a. [tex]Domain: \\ Set-Builder\:Notation → x|x ∈ R \\ Interval\:Notation → (-∞, ∞)[/tex]
Step-by-step explanation:
This is the graph of [tex]\displaystyle y = cos\:x,[/tex]in which its AMPLITUDE [A] ALWAYS starts ONE BLOCK ABOVE the midline. In the trigonometric formula below, −C gives the OPPOSITE terms of what they really are, so be EXTREMELY CAREFUL:
[tex]\displaystyle y = Acos[Bx - C] + D[/tex]
NOTE: Depending on how your trigonometric graphs are structured, your vertical shift [D] might tell you to space out the amplitude of the graphs alot more evenly on both ends.
Extended Information on Trigonometric Graphs
[tex]\displaystyle Vertical\:Shift = D \\ Phase\:Shift = \frac{C}{B} \\ Period = \frac{2}{B}π \\ Amplitude = |A|[/tex]
I am joyous to assist you anytime.