A bar on a hinge starts from rest and rotates with an angular acceleration α=(10+6t) rad/s^2, where t is in seconds. Determine the angle in radians through which the bar turns in the first 4.00s.

Respuesta :

Answer:

[tex]\theta=144\ rad[/tex]

Explanation:

given,

α=( 10+6 t ) rad/s²

[tex]\alpha =\dfrac{d\omega}{dt}[/tex]

[tex]d\omega= \alpha dt[/tex]

integrating both side

[tex]\omega= \int (10+6 t )dt[/tex]

[tex]\omega=10 t+6\dfrac{t^2}{2}[/tex]

[tex]\omega=10 t+3t^2[/tex]

we know

[tex]\omega =\dfrac{d\theta}{dt}[/tex]

[tex]d\theta= \alpha dt[/tex]

integrating both side

[tex]\theta= \int (10 t+3t^2 )dt[/tex]

[tex]\theta=10\dfrac{t^2}{2}+3\dfrac{t^3}{3}[/tex]

[tex]\theta=5 t^2+t^3[/tex]

now, at t = 4 s θ will be equal to

[tex]\theta=5\times 4^2+4^3[/tex]

[tex]\theta=144\ rad[/tex]

144 rad should be the answer your looking for buddy!
Q&A Education