Consider the reaction 2Na(s) + 2H2O(l)2NaOH(aq) + H2(g) Using standard thermodynamic data at 298K, calculate the entropy change for the surroundings when 1.74 moles of Na(s) react at standard conditions. S°surroundings = J/K g

Respuesta :

Answer : The entropy change for the surroundings when 1.74 moles of Na(s) react at standard conditions is [tex]4.38\times 10^4J/g.K[/tex]

Explanation :

The given balanced chemical reaction is,

[tex]2Na(s)+2H_2O(l)\rightarrow 2NaOH(aq)+H_2(g)[/tex]

First we have to calculate the enthalpy of reaction [tex](\Delta H^o)[/tex].

[tex]\Delta H^o=H_f_{product}-H_f_{reactant}[/tex]

[tex]\Delta H^o=[n_{NaOH}\times \Delta H_f^0_{(NaOH)}+n_{H_2}\times \Delta H_f^0_{(H_2)}]-[n_{Na}\times \Delta H_f^0_{(Na)+n_{H_2O}\times \Delta H_f^0_{(H_2O)}][/tex]

where,

We are given:

[tex]\Delta H^o_f_{(NaOH(aq))}=-469.15kJ/mol\\\Delta H^o_f_{(H_2(g))}=0kJ/mol\\\Delta H^o_f_{(Na(s))}=0kJ/mol\\\Delta H^o_f_{(H_2O(l))}=-285.8kJ/mol[/tex]

Putting values in above equation, we get:

[tex]\Delta H^o_{rxn}=[(2\times -469.15)+(1\times 0)]-[(2\times 0)+(2\times -285.8)]=-652.5kJ[/tex]

Now we have to calculate the entropy change for surrounding [tex](\Delta S)[/tex].

[tex]\Delta S=\frac{\Delta H^o_{rxn}}{T}[/tex]

where,

[tex]\Delta S[/tex] = change in entropy

[tex]\Delta H^o_{rxn}[/tex] = change in enthalpy = -652.5 kJ

T = temperature = 298 K

Now put all the given values in the above formula, we get:

[tex]\Delta S=\frac{\Delta H^o_{rxn}}{T}[/tex]

[tex]\Delta S=\frac{-652.5kJ}{298K}[/tex]

[tex]\Delta S=\frac{-652.5\times 10^3J}{298K}[/tex]

[tex]\Delta S=-2189.59J/K=-2.19\times 10^3J/K[/tex]

Now we have to calculate the entropy change for the surroundings when 1.74 moles of Na(s) react at standard conditions.

As, 2 moles of Na(s) has entropy change = [tex]-2.19\times 10^3J/K[/tex]

And, 1.74 moles of Na(s) has entropy change = [tex]\frac{1.74mol}{2mol}\times (-2.19\times 10^3J/K)[/tex]

Thus, 23 g of Na(s) has entropy change = [tex]\frac{1.74mol}{2mol}\times (-2.19\times 10^3J/K)\times 23g=4.38\times 10^4J/g.K[/tex]

Therefore, the entropy change for the surroundings when 1.74 moles of Na(s) react at standard conditions is [tex]4.38\times 10^4J/g.K[/tex]

Q&A Education