Let C be the boundary of the region in the first quadrant bounded by the x-axis, a quarter-circle with radius 7, and the y-axis, oriented counterclockwise starting from the origin. Label the edges of the boundary as C_1, C_2, C_3 starting from the bottom edge going counterclockwise. Give each edge a constant speed parametrization with domain 0 lessthanorequalto t lessthanorequalto 1: edge C_1 x_1(t) = y_1(t) = edge C_2 x_2(t) = y_2(t) = edge C_3 x_3(t) = y_3 = integral_C y^2xdx + x^2ydy = integral_C1 y^2xdx + x^2ydy + integral_C2 y^2xdx + x^2ydy + integral_C3 y^2xdx + x^2ydy 10pt = Applying Green's theorem, integral_C y^2 xdx + x^2 ydy = dxdy The vector field F = y^2x i + x^2y j is:

Respuesta :

The curves [tex]C_1,C_2,C_3[/tex] can be described parametrically by

[tex]\vec r_1(t)=7t\,\vec\imath,\quad0\le t\le1[/tex]

[tex]\vec r_2(t)=7\cos t\,\vec\imath+7\sin t\,\vec\jmath,\quad0\le t\le\dfrac\pi2[/tex]

[tex]\vec r_3(t)=7(1-t)\,\vec\jmath,\quad0\le t\le1[/tex]

so that the line integral over each component curve is

[tex]\displaystyle\int_{C_1}x^2y\,\mathrm dx+y^2x\,\mathrm dy=\int_0^1(0^2(7t)(7)+(7t)^2(0)(0))\,\mathrm dt=0[/tex]

[tex]\displaystyle\int_{C_2}x^2y\,\mathrm dx+y^2x\,\mathrm dy=\int_0^{\pi/2}((7\sin t)^2(7\cos t)(-7\sin t)+(7\cos t)^2(7\sin t)(7\cos t))\,\mathrm dt[/tex]

[tex]=\displaystyle7^4\int_0^{\pi/2}(\cos^2t\sin^2t-\cos^2t\sin^2t)\,\mathrm dt=0[/tex]

[tex]\displaystyle\int_{C_3}x^2y\,\mathrm dx+y^2x\,\mathrm dy=\int_0^1(0^2(7(1-t))(0)+(7(1-t))^2(0)(-7))\,\mathrm dt=0[/tex]

So the line integral over all of [tex]C[/tex] is 0.

We verify this result with Green's theorem, which says

[tex]\displaystyle\int_Cx^2y\,\mathrm dx+y^2\,\mathrm dx=\iint_D\frac{\partial(y^2x)}{\partial x}-\frac{\partial(x^2y)}{\partial y}\,\mathrm dx\,\mathrm dy=\iint_D(y^2-x^2)\,\mathrm dx\,\mathrm dy[/tex]

where [tex]D[/tex] is the region bounded by [tex]C[/tex]. In polar coordinates, this integral is

[tex]\displaystyle\int_0^{\pi/2}\int_0^7((r\sin\theta)^2-(r\cos\theta)^2)r\,\mathrm dr\,\mathrm d\theta=\left(-\int_0^{\pi/2}\cos2\theta\,\mathrm d\theta\right)\left(\int_0^7r^3\,\mathrm dr\right)=0[/tex]

Q&A Education