A 2.50-kg solid, uniform disk rolls without slipping across a level surface, translating at 3.75 m/s. If the disk’s radius is 0.100 m, find its (a) translational kinetic energy and (b) rotational kinetic energy.

Respuesta :

Answer

given,

mass of the solid = 2.50 Kg

speed of translating disk = 3.75 m/s

radius of the disk = 0.1 m

a) transnational Kinetic energy

    [tex]KE = \dfrac{1}{2}mv^2[/tex]

    [tex]KE = \dfrac{1}{2}\times 2.5 \times 3.75^2[/tex]

    [tex]KE =17.58\ J[/tex]

b)  rotational kinetic energy.

    [tex]KE = \dfrac{1}{2}I\omega^2[/tex]

     for disk

    [tex]I = \dfrac{1}{2}mr^2[/tex]       and v = rω

    [tex]KE = \dfrac{1}{2}( \dfrac{1}{2}mr^2)(\dfrac{v}{r})^2[/tex]

    [tex]KE = \dfrac{1}{4}mv^2[/tex]

    [tex]KE = \dfrac{1}{4}\times 2.5 \times 3.75^2[/tex]

    [tex]KE =8.79\ J[/tex]

a) The translational kinetic energy of the disk across the level surface is 17.58J.

b) The rotational kinetic energy of the disk is 8.79J.

Given the data in the question;

  • Mass of disk; [tex]m = 2.50kg[/tex]
  • velocity; [tex]v = 3.75m/s[/tex]
  • radius of disk; [tex]r = 0.100m[/tex]

a)

Translational kinetic energy.

Translational kinetic energy of an object is the work needed to accelerate the object from rest to a given velocity. It is expressed as:

[tex]Translational\ K_E = \frac{1}{2}mv^2[/tex]

We substitute our given values into the equation

[tex]Translational\ K_E = \frac{1}{2}*2.50kg\ *\ (3.75m/s)^2\\\\Translational\ K_E = \frac{1}{2}*2.50kg\ *\ 14.0625m^2/s^2\\\\Translational\ K_E = 17.58kg.m^2/s^2\\\\Translational\ K_E = 17.58J[/tex]

Therefore, the translational kinetic energy of the disk across the level surface is 17.58J

b)

Rotational kinetic energy

Rotational kinetic energy is the energy of rotation of a rotating rigid object or system of particles. its is expressed:

[tex]Rotational\ K_E = \frac{1}{2} Iw^2[/tex]

Where is moment of inertia around the axis of rotation and ω is the angular velocity.

Also, [tex]Moment\ of\ Inertia\ I = \frac{1}{2}mr^2[/tex]

Angular velocity ω is analogous to linear velocity v

So, [tex]v = wr \ and\ w = \frac{v}{r}[/tex]

Hence;

[tex]Rotational\ K_E = \frac{1}{2} * \frac{1}{2}mr^2* (\frac{v}{r})^2\\\\Rotational\ K_E = \frac{1}{2} * \frac{1}{2}mr^2* \frac{v^2}{r^2}\\\\Rotational\ K_E = \frac{1}{2} * \frac{1}{2}mv^2[/tex]

We substitute in our values

[tex]Rotational\ K_E = \frac{1}{2} * \frac{1}{2}*2.50kg * (3.75m/s)^2\\\\Rotational\ K_E = \frac{1}{2} * \frac{1}{2}*2.50kg * 14.0625m^2/s^2\\\\Rotational\ K_E = 8.79kg.m^2/s^2\\\\Rotational\ K_E = 8.79J[/tex]

Therefore, the rotational kinetic energy of the disk is 8.79J

Learn more: https://brainly.com/question/13093556

Q&A Education