Respuesta :
Answer:
The speed of Sharma is slower than the speed of Brandi
I.e ∵ 4.67 miles per hour [tex]<[/tex] 5 miles per hour
∴ [tex]S_2[/tex] [tex]<[/tex] [tex]S_1[/tex]
Step-by-step explanation:
Given as :
The distance cover by Brandi = [tex]D_1[/tex] = 2 [tex]\frac{1}{2}[/tex] =[tex]\frac{5}{2}[/tex]
The Time taken by Brandi for jogging = [tex]T_1[/tex] = 30 minutes =[tex]\frac{1}{2}[/tex] hour
Let the speed of Brandi = [tex]S_1[/tex] = [tex]\dfrac{\textrm Distance }{\textrm Time}[/tex]
or, [tex]S_1[/tex] = [tex]\dfrac{\textrm [tex]D_1[/tex] }{\textrm [tex]T_1[/tex] }[/tex]
Or. [tex]S_1[/tex] = [tex]\frac{\frac{5}{2}}{\frac{1}{2}}[/tex]
∴ [tex]S_1[/tex] = 5 miles per hour
Again
The distance cover by Sharma = [tex]D_2[/tex] = 3 [tex]\frac{1}{2}[/tex] =[tex]\frac{7}{2}[/tex]
The Time taken by Sharma for jogging = [tex]T_2[/tex] = [tex]\frac{3}{4}[/tex] hour
Let the speed of Sharma = [tex]S_2[/tex] = [tex]\dfrac{\textrm Distance }{\textrm Time}[/tex]
or, [tex]S_2[/tex] = [tex]\dfrac{\textrm [tex]D_2[/tex] }{\textrm [tex]T_2[/tex] }[/tex]
Or. [tex]S_2[/tex] = [tex]\frac{\frac{7}{2}}{\frac{3}{4}}[/tex]
∴ [tex]S_2[/tex] = [tex]\frac{14}{3}[/tex] = 4.67 miles per hour
Now, ∵ 4.67 miles per hour [tex]<[/tex] 5 miles per hour
∴ [tex]S_2[/tex] [tex]<[/tex] [tex]S_1[/tex]
So, Sharma jogged at slower late
Hence The speed of Sharma is slower than the speed of Brandi Answer