Respuesta :

Answer:

The speed of Sharma is slower than the speed of Brandi

I.e ∵   4.67 miles per hour  [tex]<[/tex] 5 miles per hour

      ∴  [tex]S_2[/tex] [tex]<[/tex] [tex]S_1[/tex]

Step-by-step explanation:

Given as :

The distance cover by Brandi = [tex]D_1[/tex] = 2 [tex]\frac{1}{2}[/tex] =[tex]\frac{5}{2}[/tex]

The Time taken by Brandi for jogging =  [tex]T_1[/tex] = 30 minutes =[tex]\frac{1}{2}[/tex] hour

Let the speed of Brandi = [tex]S_1[/tex] = [tex]\dfrac{\textrm Distance }{\textrm Time}[/tex]

or,  [tex]S_1[/tex] = [tex]\dfrac{\textrm  [tex]D_1[/tex]  }{\textrm   [tex]T_1[/tex] }[/tex]

Or.  [tex]S_1[/tex] = [tex]\frac{\frac{5}{2}}{\frac{1}{2}}[/tex]

∴   [tex]S_1[/tex] = 5 miles per hour

Again

The distance cover by Sharma = [tex]D_2[/tex] = 3 [tex]\frac{1}{2}[/tex] =[tex]\frac{7}{2}[/tex]

The Time taken by Sharma for jogging =  [tex]T_2[/tex] = [tex]\frac{3}{4}[/tex] hour

Let the speed of Sharma = [tex]S_2[/tex] = [tex]\dfrac{\textrm Distance }{\textrm Time}[/tex]

or,  [tex]S_2[/tex] = [tex]\dfrac{\textrm  [tex]D_2[/tex]  }{\textrm   [tex]T_2[/tex] }[/tex]

Or.  [tex]S_2[/tex] = [tex]\frac{\frac{7}{2}}{\frac{3}{4}}[/tex]

∴   [tex]S_2[/tex] = [tex]\frac{14}{3}[/tex] = 4.67 miles per hour

Now, ∵   4.67 miles per hour  [tex]<[/tex] 5 miles per hour

         ∴  [tex]S_2[/tex] [tex]<[/tex] [tex]S_1[/tex]

So, Sharma jogged at slower late

Hence The speed of Sharma is slower than the speed of Brandi Answer

Q&A Education