Answer:
1.[tex]S^{-}(g)+e^{-} \rightarrow S^{2-}(g)[/tex]
2.[tex]Ti^{2+}(g) \rightarrow Ti^{3+}(g) \,\, IE = 2652.5\,kJ.mol^{-1}[/tex]
3.The electron affinity of [tex]Mg^{2+}[/tex] is zero.
4.[tex]O^{2-}(g) \rightarrow O^{-}(g)+e^{-}[/tex]
Explanation:
1.
Electron affinity:
It is defined as the amount of energy change when an electron is added to atom in the gaseous phase.
The electron affinity of [tex]S^{-}[/tex] is as follows.
[tex]S^{-}(g)+e^{-} \rightarrow S^{2-}(g)[/tex]
2.
Ionization energy:
Amount of energy required to removal of an electron from an isolated gaseous atom.
The third ionization energy of Titanium is as follows.
[tex]Ti^{2+}(g) \rightarrow Ti^{3+}(g) \,\, IE = 2652.5\,kJ.mol^{-1}[/tex]
3.
The electronic configuration of Mg: [tex]1s^{2}2s^{2}2p^{6}3s^{2}[/tex]
By the removal of two electrons from a magnesium element we get [tex]Mg^{2+}[/tex] ion.
[tex]Mg^{2+}[/tex] has inert gas configuration i.e,[tex]1s^{2}2s^{2}2p^{6}[/tex]
Hence, it does not require more electrons to get stability.
Therefore,the electron affinity of [tex]Mg^{2+}[/tex] is zero.
4.
The ionization energy of [tex]O^{2-}[/tex] is follows.
[tex]O^{2-}(g) \rightarrow O^{-}(g)+e^{-}[/tex]