The graph of a function, f(x), is plotted on the coordinate plane. Select the function that would move the graph of the function to the right of the coordinate plane.
a.f(x+6)
b.f(x)+4
c.f(x-3)+1
d.f(x)-3

Respuesta :

Correct option:

c.f(x-3)+1

Explanation:

From the options we have either vertical or horizontal shift. So, for this type of transformation we have:

For any real positive number [tex]c[/tex], vertical and horizontal shift in the graph [tex]y=f(x)[/tex] are expressed as follows:

[tex]\bullet \ Vertical \ shift \ c \ units \ \mathbf{upward}: \\ h(x)=f(x)+c \\ \\ \bullet \ Vertical \ shift \ c \ units \ \mathbf{downward}: \\ h(x)=f(x)-c \\ \\ \bullet \ Horizontal \ shift \ c \ units \ to \ the \ right \ \mathbf{right}: \\ h(x)=f(x-c) \\ \\ \bullet \ Horizontal \ shift \ c \ units \ to \ the \ left \ \mathbf{left}: \\ h(x)=f(x+c)[/tex]

From these rules, we know that:

[tex]f(x-3)+1[/tex]

would move the graph of the function to the right of the coordinate plane because of [tex]f(x-3)[/tex]. In other words, the transformation is as follows:

[tex]f(x-3)+1[/tex] shifts the graph of [tex]f(x)[/tex] three units to the right and one unit up

Learn more:

Shifting graphs: https://brainly.com/question/10010217

#LearnWithBrainly

Q&A Education