Respuesta :
Correct option:
c.f(x-3)+1
Explanation:
From the options we have either vertical or horizontal shift. So, for this type of transformation we have:
For any real positive number [tex]c[/tex], vertical and horizontal shift in the graph [tex]y=f(x)[/tex] are expressed as follows:
[tex]\bullet \ Vertical \ shift \ c \ units \ \mathbf{upward}: \\ h(x)=f(x)+c \\ \\ \bullet \ Vertical \ shift \ c \ units \ \mathbf{downward}: \\ h(x)=f(x)-c \\ \\ \bullet \ Horizontal \ shift \ c \ units \ to \ the \ right \ \mathbf{right}: \\ h(x)=f(x-c) \\ \\ \bullet \ Horizontal \ shift \ c \ units \ to \ the \ left \ \mathbf{left}: \\ h(x)=f(x+c)[/tex]
From these rules, we know that:
[tex]f(x-3)+1[/tex]
would move the graph of the function to the right of the coordinate plane because of [tex]f(x-3)[/tex]. In other words, the transformation is as follows:
[tex]f(x-3)+1[/tex] shifts the graph of [tex]f(x)[/tex] three units to the right and one unit up
Learn more:
Shifting graphs: https://brainly.com/question/10010217
#LearnWithBrainly