PROBLEM A wheel rotates with a constant angular acceleration of 3.50 rad/s2. If the angular speed of the wheel is 2.00 rad/s at t = 0, (a) through what angle does the wheel rotate between t = 0 and t = 2.00 s? Give your answer in radians and in revolutions. (b) What is the angular speed of the wheel at t = 2.00 s? (c) What angular displacement (in revolutions) results while the angular speed found in part (b) doubles? STRATEGY The angular acceleration is constant, so this problem just requires substituting given values into the proper equations. SOLUTION

Respuesta :

Answer:

11 radians or 1.7507 revolutions

9 rad/s

7.27565 revolutions

Explanation:

[tex]\omega_f[/tex] = Final angular velocity

[tex]\omega_i[/tex] = Initial angular velocity

[tex]\alpha[/tex] = Angular acceleration

[tex]\theta[/tex] = Angle of rotation

t = Time taken

Equation of rotational motion

[tex]\theta=\omega_it+\frac{1}{2}\alpha t^2\\\Rightarrow \theta=2\times 2+\frac{1}{2}\times 3.5\times 2^2\\\Rightarrow \theta=11\ rad=\frac{11}{2\pi}=1.7507\ rev[/tex]

Angle the wheel rotates in the given time is 11 radians or 1.7507 revolutions

[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=2+3.5\times 2\\\Rightarrow \omega_f=9\ rad/s[/tex]

The angular speed of the wheel at the given time is 9 rad/s

[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \theta=\frac{\omega_f^2-\omega_i^2^2}{2\alpha}\\\Rightarrow \theta=\frac{(9\times 2)^2-2^2}{2\times 3.5}\\\Rightarrow \theta=45.71428\ rad=\frac{45.71428}{2\pi}=7.27565\ rev[/tex]

The number of revolutions if the final angular speed doubles is 7.27565 revolutions

This question involves the concepts of the equations of motion for angular motion.

(a) The wheel rotates through the angle "11 rad" (OR) "1.75 rev".

(b) The angular speed at t = 2 s is "9 rad/s".

(c) The angular displacement for double speed is "45.71 rad" (OR) "7.28 rev".

(a)

The angular displacement can be found using the second equation of motion for angular motion.

[tex]\theta = \omega_it+\frac{1}{2}\alpha t^2[/tex]

where,

θ = angular displacement = ?

ωi = initial angular speed = 2 rad/s

t = time interval = 2 s

α = angular acceleration = 3.5 rad/s²

Therefore,

[tex]\theta = (2\ rad/s)(2\ s)+\frac{1}{2}(3.5\ rad/s^2)(2\ s)^2\\\theta = 4\ rad\ +\ 7\ rad[/tex]

θ = 11 rad

[tex]\theta = (11\ rad)(\frac{1\ rev}{2\pi\ rad})[/tex]

θ = 1.75 rev

(b)

The angular speed can be found using the first equation of motion for angular motion.

[tex]\omega_f = \omega_i+\alpha t\\\omega_f = 2\ rad/s + (3.5\ rad/s^2)(2\ s)\\[/tex]

ωf = 9 rad/s

(c)

The angular displacement can be found using the third equation of motion for angular motion after we double the value of ωf.

[tex]2\alpha \theta = \omega_f^2-\omega_i^2\\2(3.5\ rad/s^2)\theta = (18\ rad/s)^2-(2\ rad/s)^2\\\\\theta = \frac{320\ rad^2/s^2}{7\ rad/s^2}\\\\[/tex]

θ = 45.71 rad

[tex]\theta = (45.71\ rad)(\frac{1\ rev}{2\pi\ rad})[/tex]

θ = 7.28 rev

Learn more about the angular motion here:

brainly.com/question/14979994?referrer=searchResults

The attached picture shows the angular equations of motion.

Ver imagen hamzaahmeds
Q&A Education