Answer:
74 units; 93 units
Explanation:
Given that,
Holding cost, H = $2 per unit
Carrying cost, O = $55
Demand in first half, D1 = 590 units
                    = 590 ÷ 6
                    = 98.33 per month
Demand in second half, D2 = 940 units
                    = 940 ÷ 6
                    = 156.67 per month
For D1; EOQ:
[tex]EOQ=\sqrt{\frac{2\times D\times O}{H} }[/tex]
[tex]EOQ=\sqrt{\frac{2\times 98.33\times 55}{2} }[/tex]
        = 73.54 or 74 units
For D2; EOQ:
[tex]EOQ=\sqrt{\frac{2\times D\times O}{H} }[/tex]
[tex]EOQ=\sqrt{\frac{2\times 156.67\times 55}{2} }[/tex]
        = 92.82 or 93 units
Hence, the appropriate order size will be 74 units and 93 units.