Nitrogen (N2) undergoes an internally reversible process from 6 bar, 247°C during which pν1.2 = constant. The initial volume is 0.1 m3 and the work for the process is 50 kJ. Assuming ideal gas behavior, and neglecting kinetic and potential energy effects, determine heat transfer, in kJ, and the entropy change, in kJ/K.

Respuesta :

Answer:

[tex]Q=25\ kJ[/tex]

[tex]\Delta s= 0.2885 J.K^{-1} [/tex]

Explanation:

Given:

  • Initial pressure of nitrogen, [tex]P_1=6\times 10^5\ Pa[/tex]
  • initial temperature, [tex]T_1=247+273=520\ K[/tex]
  • polytropic index, [tex]n=1.2[/tex]
  • initial volume, [tex]V_1=0.1\ m^3[/tex]
  • work done in the process, [tex]W=50000\ J[/tex]

For heat interaction during the polytropic process we have:

[tex]Q=W[\frac{\gamma -n}{\gamma-1} ][/tex]

[tex]Q=50\times[\frac{1.4-1.2}{1.4-1} ][/tex]

[tex]Q=25\ kJ[/tex]

For ideal gas we have the Gas Law:

[tex]P_1.V_1=m.R.T_1[/tex]

[tex]6\times 10^5\times 0.1=m.R\times 520[/tex]

[tex]m.R=115.385\ J.K^{-1}[/tex]

For work we have the relation:

[tex]W=m.R.\frac{(T_1-T_2)}{(n-1)}[/tex]

putting respective values

[tex]50000=115.385\times \frac{(520-T_2)}{(1.2-1)}[/tex]

[tex]T_2=433.33\ K[/tex]

We know entropy change:

[tex]\Delta s=\frac{dQ}{dT}[/tex]

[tex]\Delta s=\frac{25}{520-433.33}[/tex]

[tex]\Delta s= 0.2885 J.K^{-1} [/tex]

The heat transfer will be equal to [tex]25 KJ[/tex], while the entropy change will be [tex]0.2885J.K^-^1[/tex].

How to get to this result?

  • First, we need to know how heat interacts in the polytropic processor. For this, we must use the equation:

[tex]Q=W[\frac{y-n}{y-1}]\\Q= 50*\frac{1.4-1,2}{1,4-1} \\Q= 25KJ[/tex]

  • It is also necessary to know the interaction of heat in an ideal gas. For this we will use the gas law equation, as follows:

[tex]P_1V1=n.r.t_1\\(6*10^5)**0.1=n*r*520\\n*r= 115.385 J.K^-^1[/tex]

  • Next, we must consider the behavior of heat to generate work. This will be done with the equation:

[tex]W= n*r*\frac{t_1-t_2}{1.2-1} \\50000=115.385*\frac{520-t_2}{1.2-1} \\t_2= 433.33K[/tex]

  • Finally, we can calculate the entropy change with the equation:

[tex]\Delta s= \frac{dQ}{dT} \\\Delta s= \frac{25}{520-433.33} \\\Delta s= 0.2885J. K^-^1[/tex]

More info on entropy at the link:

https://brainly.com/question/15025401

Q&A Education