Consider the following two ordered bases of R3:

B={⟨2,−1,1⟩,⟨−2,2,−1⟩,⟨1,−1,0⟩},
C={⟨2,−1,−1⟩,⟨2,0,−1⟩,⟨−3,1,2⟩}.

a) Find the change of basis matrix from the basis B to the basis C.

Respuesta :

Answer:

Let [tex]A = (a_1, ..., a_n)[/tex] and [tex]B = (b_1, ..., b_n)[/tex] bases of V. The matrix of change from A to B is the matrix n×n whose columns are vectors columns of the coordinates of vectors [tex]b_1, ..., b_n[/tex] at base A.

The, we case correspond to find the coordinates of vectors of C,

[tex]\{\left[\begin{array}{ccc}2\\-1\\-1\end{array}\right], \left[\begin{array}{ccc}2\\0\\-1\end{array}\right], \left[\begin{array}{ccc}-3\\1\\2\end{array}\right]   \}[/tex]

at base B.

1. We need to find [tex]a,b,c\in\mathbb{R}[/tex] such that

[tex]\left[\begin{array}{ccc}2\\-1\\-1\end{array}\right]=a\left[\begin{array}{ccc}1\\-1\\0\end{array}\right]+b\left[\begin{array}{ccc}-2\\2\\-1\end{array}\right]+c\left[\begin{array}{ccc}2\\-1\\1\end{array}\right][/tex]

Then we find these values solving the linear system

[tex]\left[\begin{array}{cccc}1&-2&2&2\\-1&2&-1&-1\\0&-1&1&-1\end{array}\right][/tex]

Using rows operation we obtain the echelon form of the matrix

[tex]\left[\begin{array}{cccc}1&-2&2&2\\0&-1&1&-1\\0&0&1&1\end{array}\right][/tex]

now we use backward substitution

[tex]c=1\\-b+c=-1,\; b=2\\a-2b+2c=2,\; a=4[/tex]

Then the coordinate vector of [tex]\left[\begin{array}{ccc}2\\-1\\-1\end{array}\right][/tex] is [tex]\left[\begin{array}{ccc}4\\2\\1\end{array}\right][/tex]

2. We need to find [tex]a,b,c\in\mathbb{R}[/tex] such that

[tex]\left[\begin{array}{ccc}2\\0\\-1\end{array}\right]=a\left[\begin{array}{ccc}1\\-1\\0\end{array}\right]+b\left[\begin{array}{ccc}-2\\2\\-1\end{array}\right]+c\left[\begin{array}{ccc}2\\-1\\1\end{array}\right][/tex]

Then we find these values solving the linear system

[tex]\left[\begin{array}{cccc}1&-2&2&2\\-1&2&-1&0\\0&-1&1&-1\end{array}\right][/tex]

Using rows operation we obtain the echelon form of the matrix

[tex]\left[\begin{array}{cccc}1&-2&2&2\\0&-1&1&-1\\0&0&1&2\end{array}\right][/tex]

now we use backward substitution[tex]c=2\\-b+c=-1,\; b=3\\a-2b+2c=2,\; a=4[/tex]

Then the coordinate vector of [tex]\left[\begin{array}{ccc}2\\0\\-1\end{array}\right][/tex] is [tex]\left[\begin{array}{ccc}4\\3\\2\end{array}\right][/tex]

3. We need to find [tex]a,b,c\in\mathbb{R}[/tex] such that

[tex]\left[\begin{array}{ccc}-3\\1\\2\end{array}\right]=a\left[\begin{array}{ccc}1\\-1\\0\end{array}\right]+b\left[\begin{array}{ccc}-2\\2\\-1\end{array}\right]+c\left[\begin{array}{ccc}2\\-1\\1\end{array}\right][/tex]

Then we find these values solving the linear system

[tex]\left[\begin{array}{cccc}1&-2&2&-3\\-1&2&-1&1\\0&-1&1&2\end{array}\right][/tex]

Using rows operation we obtain the echelon form of the matrix

[tex]\left[\begin{array}{cccc}1&-2&2&-3\\0&-1&1&2\\0&0&1&-2\end{array}\right][/tex]

now we use backward substitution[tex]c=-2\\-b+c=2,\; b=-4\\a-2b+2c=2,\; a=-2[/tex]

Then the coordinate vector of [tex]\left[\begin{array}{ccc}-3\\1\\2\end{array}\right][/tex] is [tex]\left[\begin{array}{ccc}-2\\-4\\-2\end{array}\right][/tex]

Then the change of basis matrix from B to C is

[tex]\left[\begin{array}{ccc}4&4&-2\\2&3&-4\\1&2&-2\end{array}\right][/tex]

Q&A Education