Answer:
[tex]1\times 10^{8}\ Pa[/tex]
Explanation:
k = Boltzmann constant = [tex]1.38\times 10^{-23}\ J/K[/tex]
r = Radius of gas molecule = [tex]2\times 10^{-10}\ m[/tex]
t = Temperature = 300 K
P = Pressure
Volume of gas per molecule is given by
[tex]V=\frac{4}{3}\pi r^3\\\Rightarrow V=\frac{4}{3}\pi (2\times 10^{-10})^3\\\Rightarrow V=3.35103\times 10^{-29}\ m^3[/tex]
From the ideal gas law we have
[tex]PV=kt\\\Rightarrow P=\frac{kt}{V}\\\Rightarrow P=\frac{1.38\times 10^{-23}\times 300}{3.35103\times 10^{-29}}\\\Rightarrow P=123544104.35\ Pa=1\times 10^{8}\ Pa[/tex]
The pressure at which the finite volume of the molecules should cause noticeable deviations from ideal-gas behavior is [tex]1\times 10^{8}\ Pa[/tex]