Respuesta :

Answer:

[tex]a=0.5[/tex]

[tex]b=-2[/tex]

Step-by-step explanation:

we have

[tex]y=ax^{2}+bx+3[/tex]

For x=2, y=1

substitute

[tex]1=a(2)^{2}+b(2)+3[/tex]

[tex]4a+2b=-2[/tex] -----> equation A

Remember that

If the function has a relative minimum in (2,1), then the first derivative of the function must be equal to zero when x=2

The first derivative is equal to

[tex]\frac{dy}{dx}=2ax+b[/tex]

so

[tex]0=2a(2)+b[/tex]

[tex]b=-4a[/tex] ----> equation B

Solve the system of equations A and B by substitution

Substitute equation B in equation A

[tex]4a+2(-4a)=-2[/tex]

solve for b

[tex]4a-8a=-2[/tex]

[tex]-4a=-2[/tex]

[tex]a=0.5[/tex]

Find the value of b

[tex]b=-4a[/tex] ----> [tex]b=-4(0.5)=-2[/tex]

The quadratic equation is

[tex]y=0.5x^{2}-2x+3[/tex]

Q&A Education