Respuesta :
Answer:
A) CI = (57.12 , 59.48)
B) CI = (57.71 , 58.89)
C) CI = (57.53 , 59.07)
D) n = 239.63
Step-by-step explanation:
a)
given data:
mean, [tex]\bar X = 58.3[/tex]
standard deviation, σ = 3
sample size, n = 25Given CI level is 95%, hence α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025,
Zc = Z(α/2) = 1.96
[tex]ME = Zc * σ \sqrt{n}[/tex]
[tex]ME = 1.96 * 3 \sqrt{25}[/tex]
ME = 1.18
[tex]CI = (\bar X - Zc * s\sqrt{n} , \barX + Zc * s\sqrt{n})[/tex]
[tex]CI = (58.3 - 1.96 * 3\sqrt{25} , 58.3 + 1.96 * 3\sqrt{25})[/tex]
CI = (57.12 , 59.48)
b)
Given data:
mean, [tex]\bar X = 58.3[/tex]
standard deviation, σ = 3
sample size, n = 100
Given CI level is 95%, hence α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025, Zc = Z(α/2) = 1.96
[tex]ME = zc * σ \sqrt{n} [/tex]
[tex]ME = 1.96 * 3\sqrt{100} [/tex]
ME = 0.59
[tex]CI = (\bar X - Zc * s\sqrt{n} , \barX + Zc * s\sqrt{n})[/tex]
[tex]CI = (58.3 - 1.96 * 3\sqrt{100} , 58.3 + 1.96 * 3\sqrt{100})[/tex]
CI = (57.71 , 58.89)
c)
sample mean, [tex]\bar X = 58.3[/tex]
sample standard deviation, σ = 3
sample size, n = 100
Given CI level is 99%, hence α = 1 - 0.99 = 0.01
α/2 = 0.01/2 = 0.005, Zc = Z(α/2) = 2.58
[tex]ME = Zc * σ \sqrt{n} [/tex]
[tex]ME = 2.58 * 3\sqrt{100}[/tex]
ME = 0.77
[tex]CI = (\bar X - Zc * s\sqrt{n} , \barX + Zc * s\sqrt{n})[/tex]
[tex]CI = (58.3 - 2.58 * 3\sqrt{100} , 58.3 + 2.58 * 3/\sqrt{100}[/tex]
CI = (57.53 , 59.07)
D)
Given data:
Significance Level, α = 0.01,
Margin or Error, E = 0.5,
σ = 3
The critical value for α = 0.01 is 2.58.
for calculating population mean we used
[tex]n \geq (zc *σ/E)^2[/tex]
[tex]n = (2.58 * 3/0.5)^2[/tex]
n = 239.63