Answer:
C) 8, 15, 16 is NOT Pythagorean TRIPLET.
Step-by-step explanation:
There numbers a, b and c are said to be a PYTHAGORAS TRIPLET if
[tex](a) ^2 + (b)^2 = (c) ^2[/tex]
Now, here in the given options:
A)5, 12, 13
[tex](5)^2 + (12)^2 = 25 + 144 = 169 = (13)^2\\\implies (5) ^2 + (12)^2 = (13) ^2[/tex]
Hence, 5, 12, 13 is a Pythagorean TRIPLET.
B)7, 24, 25
[tex](7)^2 + (24)^2 = 49 + 576= 625 = (25)^2\\\implies (7) ^2 + (24)^2 = (25) ^2[/tex]
Hence, 7, 24, 25 is a Pythagorean TRIPLET.
C)8, 15, 16
[tex](8)^2 + (15)^2 = 64 + 225= 289 \neq (16)^2 = 256\\\implies (8) ^2 + (15)^2 \neq (16) ^2[/tex]
Hence, 8, 15, 16 is NOT Pythagorean TRIPLET.
D)11, 60, 61
[tex](11)^2 + (60)^2 = 121 + 3600 = 3721 = (61)^2\\\implies (11) ^2 + (60)^2 = (61) ^2[/tex]
Hence, 11, 60, 61 is a Pythagorean TRIPLET.
E)12, 35, 37
[tex](12)^2 + (35)^2 = 144 + 1225 = 3721 = (37)^2\\\implies (12) ^2 + (35)^2 = (37) ^2[/tex]
Hence, 12,35 , 37 is a Pythagorean TRIPLET.