Answer:
The proof is given below.
Step-by-step explanation:
Given: ( the correct question and ans is as follow )
sin (x + y) = 3sin ( x - y)
To Prove
tan x = 2 tan y
Proof:
[tex]\sin (x+y) = 3\sin (x-y)[/tex]
Using the identities
[tex]\sin (A+B) = \sin A.\cos B + \cos A.\sin B\\and\\\sin (A-B) = \sin A.\cos B - \cos A.\sin B\\[/tex]
we get
[tex]\sin x.\cos y + \cos x.\sin y = 3(\sin x.\cos y - \cos x.\sin y)\\\sin x.\cos y + \cos x.\sin y = 3\sin x.\cos y - 3\cos x.\sin y[/tex]
Now we will take sin x . cos y to the left hand side and cos x . sin y to the right hand side,we get
[tex]3\sin x.\cos y - \sin x.\cos y = 3\cos x.\sin y +\cos x.\sin y\\2\sin x.\cos y =4\cos x.\sin y\\\sin x.\cos y =2\cos x.\sin y \ \textrm{4 divide by 2}\\ \frac{\sin x}{\cos x} =2\times \frac{\sin y}{\cos y} \\\textrm{we know identity }\\\frac{\sin x}{\cos x} = \tan x\\\frac{\sin y}{\cos y} = \tan y\\\therefore \tan x = 2\tan y\ ...............{PROVED}[/tex]