Answer:
a) [tex]a_c = 1.09m/s^2[/tex]
b) T = 720.85N
Explanation:
With a balance of energy from the lowest point to its maximum height:
[tex]m*g*L(1-cos\theta)-1/2*m*V_o^2=0[/tex]
Solving for [tex]V_o^2[/tex]:
[tex]V_o^2=2*g*L*(1-cos\theta)[/tex]
[tex]V_o^2=2.408[/tex]
Centripetal acceleration is:
[tex]a_c = V_o^2/L[/tex]
[tex]a_c = 2.408/2.21[/tex]
[tex]a_c = 1.09m/s^2[/tex]
To calculate the tension of the rope, we make a sum of forces:
[tex]T - m*g = m*a_c[/tex]
Solving for T:
[tex]T =m*(g+a_c)[/tex]
T = 720.85N