Respuesta :

Answer:

t₁ = 3

t₂ = 7

t₃ = 11

[tex]t_{(n+1)} = 4 n + 3\\t_{(n+1)}-t_{n} =4\\[/tex]

Step-by-step explanation:

Given:

[tex]t_{n} = 4n - 1[/tex]

To Find:

t₁ = ?

t₂ = ?

t₃ = ?

[tex]t_{(n+1)} = ?\\t_{(n+1)}-t_{n} =?\\[/tex]

Solution:

Put n = 1 in the given equation we get

t₁ = 4×1 - 1 = 3

Put n = 2

t₂ = 4×2 - 1 = 7

Put n = 3

t₃ = 4×3 - 1 = 11

Put n = n + 1

[tex]t_{(n+1)} = 4(n+ 1) -1\\t_{(n+1)} = 4n+4 -1 = 4n+3\\[/tex]

Now we want

[tex]t_{(n+1)}-t_{n} = (4n + 3) - (4n-1)\\t_{(n+1)}-t_{n} = (4n + 3 - 4n+1)\\t_{(n+1)}-t_{n} = 4[/tex]

Q&A Education