Respuesta :
Answer:
1. [tex]X_{cm}=-8.57m[/tex]
2. [tex]Y_{cm}=-14.29m[/tex]
3. [tex]V_{cm} = 16.66m/s[/tex]
4. α = 59.05°
5. [tex]V_{cm} = 16.66m/s[/tex]
6. α = 59.05°
Explanation:
The position of the center of mass 1s before the collision is:
[tex]X_{cm}=\frac{X_c*mc+X_t*m_t}{m_c+m_t}[/tex]
where
[tex]X_c=-20m[/tex]; Â [tex]m_c=1500kg[/tex]; Â
[tex]X_t=0m[/tex]; Â [tex]m_t=2000kg[/tex];
Replacing these values:
[tex]X_{cm}=-8.57m[/tex]
[tex]Y_{cm}=\frac{Y_c*mc+Y_t*m_t}{m_c+m_t}[/tex]
where
[tex]Y_c=0m[/tex]; Â [tex]m_c=1500kg[/tex]; Â
[tex]Y_t=-25m[/tex]; Â [tex]m_t=2000kg[/tex];
Replacing these values:
[tex]Y_{cm}=-14.29m[/tex]
The velocity of their center of mass is:
[tex]V_{cm-x}=\frac{V_{c-x}*mc+V_{t-x}*m_t}{m_c+m_t}[/tex]
where
[tex]V_{c-x}=20m/s[/tex]; Â [tex]m_c=1500kg[/tex]; Â
[tex]V_{t-x}=0m/s[/tex]; Â [tex]m_t=2000kg[/tex];
Replacing these values:
[tex]V_{cm-x}=8.57m/s[/tex]
[tex]V_{cm-y}=\frac{V_{c-y}*mc+V_{t-y}*m_t}{m_c+m_t}[/tex]
where
[tex]V_{c-y}=0m[/tex]; Â [tex]m_c=1500kg[/tex]; Â
[tex]V_{t-y}=-25m[/tex]; Â [tex]m_t=2000kg[/tex];
Replacing these values:
[tex]V_{cm-y}=-14.29m[/tex]
So, the magnitude of the velocity is:
[tex]V_{cm}=\sqrt{V_{cm-x}^2+V_{cm-y}^2}[/tex]
[tex]V_{cm}=16.66m/s[/tex]
The angle of the velocity is:
[tex]\alpha =atan(V_{cm-y}/V_{cm-x})[/tex]
[tex]\alpha=59.05\°[/tex]
Since on any collision, the velocity of the center of mass is preserved, then the velocity after the collision is the same as the previously calculated value of 16.66m/s at 59.0° due north of east