The volume of a square pyramid is
[tex]V=( \frac{1}{3}) b^{2} h[/tex]
where b is the length of the base and h is the height
So plugging the numbers into the formula,
[tex]V=( \frac{1}{3}) b^{2} h[/tex]
[tex]V=( \frac{1}{3}) (219.8m)^{2} (174.34m)[/tex]
[tex]V=( \frac{1}{3}) (48312.04m^{2}) (174.34m)[/tex]
[tex]V=( \frac{1}{3}) (8422721.0536m^{3})[/tex]
[tex]V=2807573.68453m^{3}[/tex]
the question says to the nearest cubic meter so the answer rounds up to
[tex]V=2807574m^{3}[/tex]
The answer is [tex]V=2807574m^{3}[/tex]