Suppose the heights of seasonal pine saplings are normally distributed. If the population standard deviation is 14 millimeters, what minimum sample size is needed to be 95% confidence that the sample mean is within 4 millimeters of the true population mean?​

Respuesta :

Answer: 48

Step-by-step explanation:

As per given , we have

Population standard deviation : [tex]\sigma=14\text{ millimeters}[/tex]

Significance level : [tex]\alpha=1-0.95=0.05[/tex]

Critical value for 95% confidence interval (refer to z-value table) = [tex]z_{\alpha/2}=1.96[/tex]

Margin of error : [tex]E=4\text{ millimeters}[/tex]

Formula , we use to find the sample size :

[tex]n=(\dfrac{z_{\alpha/2}\cdot\sigma}{E})^2\\\\ n=(\dfrac{1.96\cdot 14}{4})^2\\\\ n=(6.86)^2=47.0596\approx48[/tex]

Hence, the required sample size = 48

Q&A Education