How long would it take a car with a top speed of 203 mph to travel 12.42 miles up a slope of 6.4% accelerating at 0.091 G's (2.93 ft/s sq.)

Respuesta :

Answer:

319 seconds

Step-by-step explanation:

The distance 12.42 miles is equivalent to

12.42*5280=65577.6 ft

[tex]ma-mgsin\theta=ma_{net} [/tex]

When slope is 6.4%, [tex]\theta=tan^{-1} 0.064=3.67^{\circ} [/tex]

[tex]a_{net}=a-gsin\theta=2.93-32.2sin3.67=-0.87 [/tex]

Therefore, [tex]a_{net}=-0.87 ft/s^{2} [/tex]

Also

[tex]s=ut+0.5a_{net} [/tex]

[tex]65577.6=297.73t+0.5(-0.87)t^{2} [/tex]

[tex]0.87t^{2}-297.73t+6577.6=0 [/tex]

Making t the subject of the formula by solving quadratic equation

t=318.4791278210496

Therefore, time is 319 seconds

Q&A Education