An ideal gas mixture with k = 1.31 and a molecular weight of 23 is supplied to a converging nozzle at p0 = 5 bar, T0 = 700 K, which discharges into a region where the pressure is 1 bar. The exit area is 50 cm2 . For steady isentropic flow through the nozzle, determine:
(a) the exit temperature of the gas, in K.
(b) the exit velocity of the gas, in m/s.
(c) the mass flow rate, in kg/s.

Respuesta :

Answer:

Given that

k=1.31

Po=5 bar

To=700 K

P₁=1 bar

T₁=?

A₁=50 cm²

We know that

[tex]\dfrac{T_1}{T_o}=\left(\dfrac{P_1}{P_o}\right)^{\dfrac{k-1}{k}}[/tex]

By putting the values

[tex]\dfrac{T_1}{T_o}=\left(\dfrac{P_1}{P_o}\right)^{\dfrac{k-1}{k}}[/tex]

[tex]\dfrac{T_1}{700}=\left(\dfrac{1}{5}\right)^{\dfrac{1.3-1}{1.3}}[/tex]

T₁=482.3 K

Now from first law for open system

[tex]h_o+\dfrac{V_o^2}{2000}=h_1+\dfrac{V_1^2}{2000}[/tex]

[tex]C_p=R\dfrac{k}{k-1}\ KJ/kg.k[/tex]

[tex]C_p=\dfrac{8.314}{23}\times \dfrac{1.31}{1.31-1}\ KJ/kg.k[/tex]

Cp=1.527 KJ/kg.k

h= Cp T

[tex]h_o+\dfrac{V_o^2}{2000}=h_1+\dfrac{V_1^2}{2000}[/tex]

[tex]1.527\times 700+\dfrac{0^2}{2000}=1.527\times 482.3+\dfrac{V_1^2}{2000}[/tex]

[tex]\dfrac{V_1^2}{2000}=1.527\times 700-1.527\times 482.3[/tex]

V₁=815.37 m/s

Mass flow rate m=ρ A₁V₁

[tex]\rho=\dfrac{P}{RT}[/tex]

[tex]\rho=\dfrac{100}{\dfrac{8.314}{23}\times 482.3}\ kg/m^3[/tex]

ρ=0.57 kg/m³

m=ρ A₁V₁

m= 0.57  x 50 x 10⁻⁴ x 815.37 m/s

m=2.32 kg/s

Q&A Education