Respuesta :

Answer:

The system has one solution

Step-by-step explanation:

we have the system of equations

[tex]y=\frac{2}{3}x+2[/tex] ----> equation A

[tex]6x-4y=-10[/tex] ----> equation B

Solve the system by substitution

substitute equation A in equation B

[tex]6x-4(\frac{2}{3}x+2)=-10[/tex]

[tex]6x-\frac{8}{3}x-8=-10[/tex]

Solve for x

Multiply by 3 both sides to remove the fraction

[tex]18x-8x-24=-30[/tex]

Combine like terms

[tex]10x=-30+24[/tex]

[tex]10x=-6[/tex]

[tex]x=-\frac{6}{10}[/tex]

Simplify

[tex]x=-\frac{3}{5}[/tex]

Find the value of y

[tex]y=\frac{2}{3}(-\frac{3}{5})+2[/tex]

[tex]y=-\frac{6}{15}+2[/tex]

[tex]y=\frac{24}{15}[/tex]

Simplify

[tex]y=\frac{8}{5}[/tex]

The solution of the system is the point [tex](-\frac{3}{5},\frac{8}{5})[/tex]

therefore

The system has one solution

Answer:

one solution: (-0.6, 1.6)

Step-by-step explanation:

I took the test and it is correct edge 2022

Q&A Education