Respuesta :
Answer:
The total amount of two-dimensional space needed for the pool and its surrounding is 780 feet².
Step-by-step explanation:
Consider the provided information.
The drawing uses a scale of 1 inch to 1 3/4 feet.
Now consider the figure shown.
The length and Width of the rectangle is [tex]22\frac{2}{7}[/tex] inch and [tex]11\frac{3}{7}[/tex] inch.
[tex]22\frac{2}{7}=\frac{156}{7}[/tex]
[tex]11\frac{3}{7}=\frac{80}{7}[/tex]
First convert the length and width from inches to feet.
[tex]1\ inch=1\frac{3}{4}\ feet[/tex]
[tex]1\ inch=\frac{7}{4}\ feet[/tex]
Multiply both the sides by [tex]\frac{156}{7}[/tex]
[tex]\frac{156}{7}\ inch=\frac{156}{7}\times \frac{7}{4}\ feet[/tex]
[tex]\frac{156}{7}\ inch=39\ feet[/tex]
Now convert [tex]\frac{80}{7}[/tex] into feet.
[tex]\frac{80}{7}\ inch=\frac{80}{7}\times \frac{7}{4}\ feet[/tex]
[tex]\frac{80}{7}\ inch=20\ feet[/tex]
Now find the area of rectangle using the formula. [tex]A=l\times w[/tex]
[tex]A=39\times 20[/tex]
[tex]A=780[/tex]
Hence, the total amount of two-dimensional space needed for the pool and its surrounding is 780 feet².