An airplane is flying in a horizontal circle at a speed of 101 m/s. The 82.0 kg pilot does not want the centripetal acceleration to exceed 6.83 times free-fall acceleration. Find the minimum radius of the planet’s path. The acceleration due to gravity is 9.81 m/s2. Answer in units of m.

Respuesta :

Answer:

The radius minimum that not exceed the 6.83 times free-fall accelerations

r=152.403m

Explanation:

The centripetal acceleration is given by.

[tex]a_{c}=\frac{V^{2} }{r}[/tex]

Where

[tex]V=101 \frac{m}{s}\\a_{c}=6.83*g\\g=9.8\frac{m}{s^{2}} \\[/tex]

[tex]a_{c}=66.934 \frac{m}{s^{2}}[/tex]

Obtaining the expression for the radius.

[tex]a_{c}=\frac{V^{2} }{r}\\r=\frac{V^{2} }{a_{c}}[/tex]

[tex]r=\frac{(101\frac{m}{s})^{2}}{66.934\frac{m}{s^{2}}}[/tex]

[tex]r=\frac{10201 \frac{m^{2} }{s^{2}}}{66.934\frac{m}{s^{2}}}[/tex]

[tex]r=152.403m[/tex]

This question involves the concepts of centripetal acceleration and tangential speed.

The minimum radius of the planet's path should be "152.25 m".

Centripetal Acceleration

Centripetal acceleration is the acceleration of a body due to its circular motion.The centripetal acceleration of the planet can be given by the following formula:

[tex]a_c=\frac{v^2}{r}\\\\[/tex]

where,

  • [tex]a_c[/tex] = centripetal acceleration = (6.83)g = (6.83)(9.81 m/s²) = 67 m/s²
  • v = tangential speed of the planet = 101 m/s
  • r = radius of the planet's path = ?

Therefore,

[tex]67\ m/s^2=\frac{(101\ m/s)^2}{r}\\\\r=\frac{(101\ m/s)^2}{67\ m/s^2}\\\\[/tex]

r = 152.25 m

Learn more about centripetal acceleration here:

https://brainly.com/question/17689540

Q&A Education