The lifetime of a certain type of battery is normally distributed with mean value 10 hours and standard deviation 1 hour. There are four batteries in a package. What lifetime value is such that the total lifetime of all batteries in a package exceeds that value for only 5% of all packs

Respuesta :

Answer:43.29 hr

Explanation:

Given

mean [tex]\mu =10 hr[/tex]

standard deviation [tex]\sigma =1 hr[/tex]

n=4

Total Life time of four batteries [tex]=4\cdot \mu =4\cdot 10=40 hr[/tex]

[tex]P\left [\frac{x-\mu }{\frac{\sigma }{\sqrt{n}}}> \frac{x-40}{\frac{1}{\sqrt{4}}}\right ]=5%[/tex]

[tex]P\left [ z> \frac{x-40}{\frac{1}{\sqrt{4}}}\right ]=0.05[/tex]

[tex]1-P\left [ z< \frac{x-40}{\frac{1}{\sqrt{4}}}\right ]=0.05[/tex]

[tex]P\left [ z< \frac{x-40}{\frac{1}{\sqrt{4}}}\right ]=0.95[/tex]

from z table limiting value of [tex]z=1.645[/tex]

thus [tex]\frac{x-40}{2}=1.645[/tex]

[tex]x-40=3.29[/tex]

[tex]x=43.29[/tex]

Q&A Education