Respuesta :
Answer:
A. 756
B. 69.44 or 62.5
Step-by-step explanation:
To get the answer for B you first convert 0.5mm to micrometers.
0.5 millimeters = 500 micrometers
Now, we divide 500 by 8
500 ÷ 8 = 62.5
To get the exact result, we divide 500 by 7.2
500 ÷ 7.2 = 69.44
Answer:
A) [tex] 5.76\text{ meters}[/tex]
B) 62
Step-by-step explanation:
The width of a red blood cell is approximately 8 micrometers [tex]=8\times 10^{-6}[/tex] meters
Part A)
Width of 1 red blood cell [tex]=8\times 10^{-6}[/tex] meters
width of [tex]7.2\times 10^5[/tex] red blood cells [tex]=7.2\times 10^5\times 8\times 10^{-6}[/tex] meters
[tex]=7.2\times 8\times 10^5\times 10^{-6}[/tex]
[tex]=57.6\times 10^{-1}[/tex]
Now change into scientific notation. So, decimal should be between 1 to 10
Decimal move 1 digit right to left
[tex]=5.76\times 10^1\times 10^{-1}[/tex]
[tex]=5.76\text{ meters}[/tex]
Hence, the width of red blood cells is [tex] 5.76\text{ meters}[/tex]
Part B)
If a grain of salt is 0.5 mm wide.
First convert mm to m. ( 1 mm = 1 × 10⁻³ m)
Therefore, 0.5 mm = 5 × 10⁻⁴ m
[tex]\text{Number of red blood cells fit}=\dfrac{\text{Size of grain}}{\text{Size of a red blood cell}}[/tex]
Size of a grain = 5 × 10⁻⁴ m
Size of a blood cell = 8 × 10⁻⁶ m
[tex]\text{Number of red blood cells fit}=\dfrac{5\times 10^{-4}}{8\times 10^{-6}}[/tex]
[tex]\text{Number of red blood cells fit}=62.5[/tex]
Hence, 62 number of red blood cells fit in a grain of salt.