Answer:
[tex]P(12.25\leq x \leq 12.35 ) = 0.9876[/tex]
Explanation:
given,
mean (μ) = 12.3 Kg
standard deviation (σ ) = 0.1
random sample = 25
probability between 12.25 and 12.35 kg
[tex]P(12.25\leq x \leq 12.35 ) = P(\dfrac{12.35-12.3}{\dfrac{0.1}{\sqrt{n}}}\leq z)- P(\dfrac{12.25-12.3}{\dfrac{0.1}{\sqrt{n}}}\leq z)[/tex]
[tex]P(12.25\leq x \leq 12.35 ) = P(\dfrac{12.35-12.3}{\dfrac{0.1}{\sqrt{25}}}\leq z)- P(\dfrac{12.25-12.3}{\dfrac{0.1}{\sqrt{25}}}\leq z)[/tex]
[tex]P(12.25\leq x \leq 12.35 ) = P(\dfrac{12.35-12.3}{\dfrac{0.1}{5}}\leq z)- P(\dfrac{12.25-12.3}{\dfrac{0.1}{5}}\leq z)[/tex]
[tex]P(12.25\leq x \leq 12.35 ) = P(\dfrac{5 (12.35-12.3)}{0.1}\leq z)- P(\dfrac{5(12.25-12.3)}{0.1}\leq z)[/tex]
[tex]P(12.25\leq x \leq 12.35 ) = P(\dfrac{2.5\leq z)- P(-2.5\leq z)[/tex]
using z-table
[tex]P(12.25\leq x \leq 12.35 ) = 0.9938 - 0.0062[/tex]
[tex]P(12.25\leq x \leq 12.35 ) = 0.9876[/tex]