Answer:
30.95°
Explanation:
We need to define the moment of inertia of cylinder but in terms of mass, that equation say,
[tex]A=\frac{1}{12}m(3r^2+l^2)[/tex]
Replacing the values we have,
[tex]A=\frac{1}{12}(500)(3(0.5)^2+(2)^2)[/tex][tex]A=197.9kg.m^2[/tex]
At the same time we can calculate the mass moment of intertia of cylinder but in an axial way, that is,
[tex]c=\frac{1}{2}mr^2[/tex]
[tex]c=\frac{1}{2}(500)(0.5)^2[/tex]
[tex]c=62.5kg.m^2[/tex]
Finally we need to find the required angle between the fixed line a-a (I attached an image )
[tex]\Phi = 2tan^{-1}\sqrt{\frac{(\frac{A}{cos\gamma})^2-A^2}{c^2}}[/tex]
Replacing the values that we have,
[tex]\Phi = 2tan^{-1}\sqrt{\frac{(\frac{197.9}{cos5\°})^2-197.9^2}{62.5^2}}[/tex]
[tex]\Phi = 2tan^{-1}(\sqrt{0.076634})[/tex]
[tex]\Phi = 2tan^{-1}(0.2768)[/tex]
[tex]\Phi = 2(15.47)[/tex]
[tex]\Phi = 30.95\°[/tex]